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Abstract :
This report describes the development of an alternate formulation of the QD ?
digital filter using matrix-vector notation and methods, The objectives of the

report are to clarify the concepts on which the filter is based and to briefly
indicate the structural similarity of the QD and Kalman filters as well as the
difference between them. The technique for inserting into QD cbserved derivative
data obtained independently of the normal input observations is briefly described.
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A Matrix~Vector Focmulation of the QD Digital Filter

-Introduction

In July 1967 the writer developed a new, more general formulation of a
very efficient type of real-time .digital filter and called it tha "QD Filter", (D)
Actually, the structures of the computational formulas for the first and second
order QD filters were not new, As early as 1957,(2) (3) for example, workers in
radar engineering developed the well-known a-8 digital filter which is used
primarily to predict estimates of position coordinates. The 0-8 filter is com-
parable to a first-order QD type of filter. Then in 1964 J. J. Lynn (4) developed
a second~order filter with three coefficients a,8, and Y .analytically determined
to attain the optimum trade~off between distortion of the true input information
and attenuation of the corrupting noise inhcrent in the input data., The QD
formulation, in contrast to these earlier developments, is much more general
because it is based on ap N-th order polynominal fit of a span of input data points,
subject to the least-squares error criterion and intercept and slope constraints.
Exhaustive experiments have shown that the performances of the second and third
~rder QD filters are essentially the same as the respective!performances of the
equivalent classical constrained least-squares filters.

The minimal computing time required by the QD filter is independent of the
point span length. Because of this computational efficiency, the second-order
QD filter is now implemented in a variety of computer programs for filtering
radar data at White Sands Missile Range, e.g., the real-time program for flight-
safety support of PERSHING missile overflights. The third-order version has
been used experimentally and displays negligible ' '"velocity lag'" error in velocity
estimates obtained from radars observing a missile during its thrusting periods.

It 1s understood that Lynn's a,B,y digital filter has been used in similiar real-
time computer programs at the Eastern Test Range.

It has been cbserved that the QD computational formulas have the same general
styucture as those of the discrete Kalman Filter. This similarity is quite natural
because both filters are recursive. Otherwise, they are soc different that the QD
filter can not be considered as a special case of the Kalman filter, which will be
quite appavent to readers who are familiar with the Kalman theory.

The original QD filter development employed classical summation (scalar)
notation which was extremely tedious for the reader to follow. It is hoped that
this new development using matrix-vector notation presented in the following
chapters will be clearer and facilitate much easier reading. The manner in which
the development is presented has several other specific objectives: (1) to show
the Kaiman-knowledgable readers that the QD filter can be cast in matrix-vector
notation and that, despite the structural similarity, the QD theory is distinctly

el
P wwumﬁ

:
:

g Bt

LA gt el |G gt v

1) e o

TR T

R S ) et A PR s D 8 0,

E
3
]
%
A

o
£
]
3
E]
e
=3
=
1
,1
ks
o]
=]
¢
il
b
3
"{i

4

9, k88 B kel e,

oL S ek e L AT OR S S a el

D0 Py KA e

ot

hy

&

ottt PR L N e Rt



different from the Kalman theory;
filter development which can be ‘un
presented in the last chapter on
filter was not included in refere

ad (2) to provide
dérstood without re
the extension and applications o
nce 1 but nevertheless is most s

a self-contained QD
ference 1.

The material
f the QD
ignificant,

N 1 9 o A A

g
:
;1
|
=
=
b
>,
4
k>
4
e
e
:
3

Zj
E
™
E’jﬁ
2

e e g
L B A N L) s v R d Nty el 0

ATTRCT T A

Sl ot a6 L

LA

2 b e b AL,

2 S N L 0 A Bl 0L N B R A



- e = o sz TR ST

Notation

In our development we will use the following notation:

1 - Matrices in capital letters cr matrix algebraic expressions in
brackets;

2 - Column vectors -in lower-case letters;

~ Row vectors in lower case letters with a "T" superscript;

W

- Scalars, vector elements, matrix elements in lower case Greek letters;

5 - Minug one superscript for the inverse of a square matrix;
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Subscripts on derivative vectors denote the point in the span ac which
the derivatives are evaluated; .

~
.
!

Subscripts will also be used to designate the components of partitioned
matrices and vectors; ‘

8 ~ Estimates will be designated with a "hat" and predicted values with a
"bar"; and

9 - Superscripts in parentheses on derivative vectors' elements denote the
order of the derivative,

10 - Formula numbers with an asterisk are rewritten in Appendix I along with

the corresponding formulas of reference 1 whose numbers are given in
brackets.
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The Matrix-Vector Formulation of the Classic:.:
Constrained Least-Squares Curve Fittilig Procédure

We will be fitting an N-th order polynomial to a span of (M+l) data
points X i 0<m<M, >N, equally spaced with an interval h. The. Mth vosition
of the span will contain the current (real-time) data point.

For clearer
delineation we will use the notation of a truncated Taylor series expanded

about the point m=0 instead of a polynomial with undetcrmined coefficients.
Accordingly, we write:

-~ A A 2 A N -
- F L@ § (mh)™ Z(N)
Xm Xo+ mhxo+!%. . XO et ™ xo , Oimi"’ (1)*

where:

)

xm - Smoothed estimates of the X_, the M+l values of input data
contained within the span, %_gmﬁ";

xén)- Estimates of the derivatives (parameters), 0<n<N, evaluated
at m=0,

Given the x, we wish to determine the values of the x(()n) which will minimize
the squared-error sum y @

M M

2 2\2
= € = Z (X - ) (2,
v E‘ao m o0 MW
In matrix-vector notation (1) and (2) are written as:
X~e = x = Axo (&)1
and
Y= ele » (x-x)T(x-x) ROL
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The conditions for which ¥ is a minimum are determined by the methods of o3
matrix calculus as follows: . E
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_ after the parameter estimftes %o are obtained with (11).

Rearranging (10), substituting (3), and solving for the parameter estimates
%, glves -
0

Alx = A"'Axo,

or

A

x = [aTAI"'A"x, (1)

Substituting (11) into (3) we obtain the desired estimates X with the matrix-

vector formula for the classical unwefghted least-squares curve fitting
procedure, 1i.e.,

x = A[ATA]1AT (12)*

'Now suppose vwe have the very practical situation that we require not
only some estimate R, m 0’ within the span, e.g., the mid-point, but also
the derivative estimates R 1<n<N Ru!is given by the Taylor series (1)

The derivative
estimates are obtained directly by successive differentistion of (i),

i.e.,

*n = %0 *0 2z Yt . - Nt

A @™t 2

SO )

m 0

In matrix-vector notation the system (13) becomes

~ ml\
xm = 0 X (14)*
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d. It is an integraiion operator,

X = on

Substituting (11) into (14) gives the formula for evaluating the required
estimates,

- oaTay laTy. ans

The foregoing development has been presented to demonstrate our matrix-
vector notation in obtaining the familiar classical least-squares curve
fitting procedure. The constrained procedute begins with the mathematical
specification of the "intercept" and "slope!! constraints. The intercept
parameter is R anﬂ the slope parameter is * When the constraints are
not applied, *O and xO are evaluated along with the regaining parameters

using (11). When the constraints are applied,RO and % o are obtained using
(14) with m=1, i.e.,

L)

x, = ¢_xo , (18)
where: :
- il 2
*0 %
%y = f‘o , (19) xOE: ?0 , (20)
0 £

The Xg are the parameter estimates obtained in the preceding computation step.
The Xy are the predicted values of the current parameter estimates which are

precisely the xl obtained in the preceding computation step. We apply the
intercept and slope constraints by imposing the conditions:
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Application of these
considerations. If,
of observed position

known maximum acceleration must limit abrupt chang

Thus, the change of i
specified in the tran

We will now eval
constraint conditions

”»n

wheve

i

*0

A= [Al A2]

X oAy o= A+ Ax),

° -
and Xo = xO'

particular constraings is justified by physical
for example, Xg and X, are, respectively, estimates
and velocity components of a missile in flight, the

es in position and velocity.
ntercept and slope from one step to the next is
sition matrix ¢ in (18).

uate the remaining parameter estimates under the
(21). The first step is to partition A and Xy in (3)

(22)
;b
@y | =1 o ], (23)
(25)2 | el
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1 0 [ 0 o . . . 0
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From (22) we specify a new system:

x, = x-Al(x }1 = Az(xo)2 (25)
We observe that
(x-x) = (x-Al(xO)l-x+A1(x°)1) = (xc-xc) (26)
so that the sum of the squared errors can be written
p = (x -; )T(x -; ). 27
c ‘¢ c "¢
Then
Py = 2xoxdTy = 28T = 0 (28)*
xo)2 c ¢/ 72 2 Ye e *
Substituting (25) into (28) and solving for (xo)2 gives
~ - T "1. T *
(x'o)2 [A2 A2] A2 X . (29)
Going back to (14) we can evaluate derivative estimates at any point within
the span:
~ ml\ m ”~ m A —-—
X, = Oxy = ¢ (xo)1 =9 %0 = % (30)*
(x9)5 % =%
T, -1, T
[Az AZ] A2 Xe

In this constrained least-squareés formulation the (X,), for the next step are

evaluated using (30) with mel which implicitly 1mpose31the conditions (21).
Also, with m=M, (30) provides the real~time derivative estimates.
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It is important to note here that this constrained least-squares curve-
fitting procedure is inherently recursive because of the very nature of the
intercept and slope constraints, i.a.,using information obtained in the
preceding step to evaluate the estimates in the current step. It follows,
then, that the procedure must be "initialized" with initial constraint values
which are consistent with subgequent data. Any appreciable inconsistency
generates an undesirable transient which will mask out the desired estimates
until the transient "settles out”. 1In practice, the initial constraints are
obtained with an unconstrained curve fit over the first M+l data points.
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Matrix - Vector Formulation of the QD Filter

The key to this development of the QD filter is an approximation
requiring reformulation of the conditions(28) which minimize ine sum of

the squared errors under the slope and intercept constraints. From (28)
we have

T T,
Ay'xy = Ay hy(xg)y.
From (25) and (26) we can write

X, = x'Al(;O)l'AZ(;O)Z"'AZ(;b)Z = SxtAy(xg)ys

where:

L

Substituting (32) into (Bl) and rearranging gives
A2T6x = AZTAZGxO,
Sxp = (xg)y=(xp)y)

(xg)y = (xp)y+5x,.

12

(B1)*

(32)

(33)*

(34) *

(35)*

(36)
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Solving (34) for the Gxo gives

A

T, +~1, T
Gxo - [Az A2] A, 8x.
Substituting (37) into (36) gives

(), = Go, + (a7a 10T

~
in which the unconstrained parameter estimates (x,), are computed as
sums of the predicted values and correctinmns. Clea¥ly, (38) has no
computational advantage over (29) but was developed to provide a basis
for the QD approximation.

We observe in (33) that the 8x vector contains the last (M+l) input
data poinis, whereas the QD filter uses only the current data point. If
(38) were used to evaluate the unconstrained parameter estimates, an x
array would have to be retained to evaluate the 6x in each computing step.
An alteraative procedure would be to retain a 8x array which would have to
be shifted in each computing step as well as corrected .to take into account
the new values of parameter estimates. With this arrangement each input data
point makes a contribution through Ox to the evaluation of the parameter estimates.
Horeover, each data point makes a contribution for (M+l) consecutive computing
steps as it "passes through the filter". The QD alternative is to let each
data point make all of its (M+l) contributions during the current computing
step and drop the contributions of the other M data points. To imnlement this
reasoning we set each 8x element equal to the current element 3% minus the sum
of the corrections it would receive as the filter processes the current and

subsequent M data points. For example, the mth element of 6x for a second-
order constrained filter would be

24 2,2 A 22 A
N - ('t’_h.) o0 (M"’lz h 5" (M"m"lz h [3
6xm = 6)‘M 2 GXO’M"‘ 2 xO,M-1+. « o 2 6*0’"_”1 ’
1<m<M (39)

in which the Gx is the correction for the unconstrained parameter estimate

used to compute the correction for 8x, at the kth computing step after the
corresponding input data point enterzd the filter.Since each 690 k in (39)

can not be determined until the next M data points. are processed, we will assume
their average value is Gxo, the parameter correction vector which is being evaluated

during the current computing step, Applying this assumption, (39) can be written
in the matrix-vector form;
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8x % vBXM - C(z)v&fo,

where:

@

2

n2  @w?
2

N

@? @’
2 2

2

(Mh)

N

Then for an N~th order polynominal fit (40) becomes

6x

where:

0))

VGXM - (:(6::0)2

14

» (42)

(43)*

(44)

(45)
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In order to obtain an explicit expression for (Gx'o)2 in this modified system,
(43) is substituted in (34) to get

a,Tlwex, - C(8x),1 = ATA, (8x), (46)

Solving (46) for (6xo)2 and substituting the result into (36) gives the QD
unconstrained parameter estimates (x0)2

(xdy = G + &, a1 ta, Toex,. “7)

Using (47) in (14) givés the derivatives' estimates for any point within the span:

g
-~ ml\ - ~ ol = :
xm = & xo = ¢ (xo)l - (] xo %
3
x i
i
oy T -1, T F
(%) +A, (C+A,) 1774, véx,,
m= mo, T -1, T ;
- ¢ Xq + 4’2 [AZ (C+A2)] A2 vGXM (48) ’
2 3 N 1
. @? @ (uh) |
where: 2 31 o s s N1 E
& = | mh (@)
2 - ) 2 . :
1 mh . Z
0 1 . (49) :
. 0 g
L] - m j-.
0 0 i i
j
i
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if we set m=M we have the desired QD matrix-vector formulation

x" = ;-(M-Q-w&XM, (50)*
where:

% = ¢§M - o - "-‘*1§6 (51) %

w = ¢’2' [AZT(c+A2)]"1 Ay (52) %

A

= real-time derivative estimates ohtained in preceding
computing step.

6)( a X —-.;

M M M (53) %

In the QD filter the intercept and slope constraints are applied by (52)
in vhich ¢§ effects only the corrections on the unconstrained parameters
(xo)2 to the real-time derivative estimates. (51) ig written in several
alternate forms to show that the parameter estimates ¥p evaluated at m=0
in the preceding step are implicitly contained in the 0D formulation.

The smoothed QD outputs (i.e., those nearest the point of constraint)
are given by (14):

X = Ox (54) %

so that the smoothed QD outputs are precisely the parameter estimates at
the point of constraint.

Extensions and Applications of the OD Filter.

It is a very simple matter to mechanize the OD filter with a "variable
span' which is dynamically self-adjusting (i.e.,adantive) to specified
properties of the current data. At WSMR, for example, the 0D filter in the
flight safety program for PERSHING overflight support mentioned earlier uses
about a three-to-one variation in span length which automatically adjusts to
the current magnitude of the total acceleration, i.e.,the greater the accelera-
tion, the shorter the span. This feature effects a drastic reduction in velocity
overshoot because the span is at its minimum value during the "staging" of this
event.

for each span length, the program logic for this feature is still quite simple.
16

Although a little extra storage is required for the precomputed coefficients
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It should be pointed out that variuble span length can be adapted to almost
any type of filter. The adaptation to QD happens to be extremely simple.

Reference 1 includes a description of the DFX digital filter developed
by the writer in the Summer of 1964. Except for the manner in which the
corrections for the unconstrained parameters are computed, QD and DFX
employ the same basic recursive philosophy. In the Spring of 19(5 the
writer presented an informal paper to the Data Reduction and Computer
Working Group of the Inter-Range Instrumentation Group at the Eastern Test
Range (AFETR). In addition to explaining the basic DFX theory, the paper
described an extremely effective technique for inserting independently
measured derivative information into the filter performing its normal B
filtering functions. More specifically, it was pointed out that measured '
velocity data could be simultaneously inserted into a DFX filter acceptivg
radar positinn data to essentially eliminate such errdrs as 'overshoot" at
motor burnout or other events generating abrupt changes in acceleration.

i

To do this, the QD or DFX predicted velocity estimate fk ie replaced directly
with the corresponding measured velocity component v so that the predicted
positinn estimate in a second order filter,

B om R+ 30T, (55)

would be replaced by

%+ B+ %, (56)

It may be argued that this procedure does not buy anything because the velocity:

data are already available. This is an erroneous conclusion because, with
inserted velocity data, the filter span cah be significantly increased to
provide dramatic improvement in filtering the radar data with no increased
distortion of the true information in the radar data. In effect, then, the
-filter is operating on the difference between the rrajectory described by

the radar data and the trajectory described by th. integration of the velocity
data. This unique capability has not been used in practi.e at WSMR because
suitable measured velocity data have not been availablz. The writer, however,
has tested this technique in a wide variety of simulated situations with
convincing results. This same improvement in performance has also been noted

vhen velocity data along with position data have been inserted into the
Kalman filter,

17
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At the AFETR meeting in the Spring of 1965, the writer also described
how this technique could be extended to the insertion of acceleration data.
In filtering missile trajectqry data, for example, measured acceleration
data =y obtained via telemetry can be inserted into the filter along with
the measured position data by replacing the predicted velocity formula

%, = & o4k, | (57)
with

~
> 4

» - *y + h«M. (58)

A special case of this acceleration data insertion has been used very
successfully at WSMR for more than two years in the flight-safety support
program mentioned earijer. In this case, a burnout signal generated from
telemetered- data is made available to the real-time computer program.

When this burnout signal arrives the 3& components of the QD filters are
replaced by computed gravity components for the next several computing

cycles. In other words, when the burnout event occurs, the QD filters

are forced to forget about acceleration history. This procedure essentially
eliminates the instantaneous impact prediction overshoot problem. This
procedure also suggests that much more effective filtering of radar data can be

obtained from a ballistic missile with negligible drag by inserting tne
gravity components into the QD filters.

It should be pointed out here that, when velocity or acceleration
data are inserted into a QD filter, the smooth data formula (54) is no
longer valid because the -inserted data are arbitrary as far as the filter
1s concerned. (54) is based on a constant N~th order derivative across

the filter span,which conditio. is obviously violated with the insertion of
arbitrary derivative data.

We have also experimented extensively with QD filter arrangements using
a simple deterministic mathematical model to generate the inserted acceleration
data, As in the Kalman filter, the effectiveness of this arrangement is highly

dependent on how well the trajectory generated by the model matches the measur-
ed trajectory. Feedback techniques have been used to force the measured

trajectory data to dynamically update (correct) the model coefficients. Includ-
ing a model with the QD filter can provide performance comparable to the'Kalman
filter in relatively simple applications, e.g.,2n N-station radar data redyction.
Yhen the application hecomes complex, e.g.,the dozens of coefficients contained

18

iy b I

i S ks s ST S S

3
2

s

R A

i BN B LS B K S R

A TR A

A e AT 8 Lo e 2 AR, 0 TR )



in a 6~degree of freedom model with both radar data and multichannel telemetry
data inputs, the systematic Kalman formulation may be the only way to arrive
at a near optimum solution. In real-time applications, on the other hand, the
computing efficiency of the QD filter with inserted derivative data will pro-

vide performance comparable to the Kalman‘filtet,which could not be used at
all because of its excessive computing time,

From the foregoing discussion it is clear that the technique of inserting
derivative data into a QD filter along with the normal input data and the com-
Parison with Kalman performance is a new subject worthy of extensive investigation
and is certainly beyond the scope of this report.
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APPENDIX I,

(4]

[3]

[4]

{3l

(5]

~ ~ 2 2 A
. (E.h_ ) >

A N n A ’
x; = (%) xé“), 1=1,2,.. .M NN, .

n=0 . .
* * * 3 *

M M - |

2 A2

w » z € = Z - (X X ) 2

m=0 ™ mo T W @
M ~
Z . (xm-xm) = Minimum.
* * * * *
X~ = x a Ax0 : (3)
A N } 1 PN

i

x = § @ xW, ge1,2, .., v

n=0
* * * * *
Y= 2Te = (x-x)T(x—x) (4)
M A
z (x =x )° = Minimum
m.o m m
% * * %* *
g%o! = 200" = 28T (x-x) = 0 (10)

¥0"%p

M 3 "
‘gi-:]. m (xm-xm) - 0’ J = 0, 1, * ¢ e No
* * * % *

20

5 SN oM s DI e 5 Wt AN W W e 0 e




(91

(71

[8]

[11]

[12]

g e e

xb = [A?A]-lA?x,

N

. ry =

~(
Xg
—_ -1
[a,,0 = fag]
n M

h jn
a, = = m
in n! g-l

M
S, = o
i ELI “

* * * * *

"

x = A[aTA] ATy,

~ N
xfj) - % . big) S» =05 i=1,2,.. .M

N
(1) =]

p{d) (i)™ -
ik E-j (m=1)! 3nk.

* * * * *

A

A A ZA NA
= x 4 @h)® (@h)™ 2(N)
X X + mhxo + 5 *o +. o . + T %o

A A A N"l A
X = x % (mh) (N)
xm xo + ml'l xo '*'. . . (A + (N-l) ! xo

XM

(12)

(13)

g
i, '“t‘
bttt L v it AT Ltk N ekl
- it N Lo by W] ST B N i
ﬁ"u""“"”"‘ﬂ"*“wl'a‘y’l‘%“’f“““ TLU KPR IRET X T ok a0 0 s oty

o b

AN D ety i 0

TR L )
SRl

'yplie LD Loy WK 3

L Ll

A A B R

=3
)

Sl N 1 o RPN Y,
B AL e B B A TN R o A LA Bt LA A AR L




~ ml\
X, = ) Xy
- N n=j
@ @™ cmy ,
(10 x; r);’.j @t %o+ 30,1, ...nN :
* * * * . * ;
;m = o™aTar AT, @an
SO R e :
[11] %0 = g;obik S, 1=0,1, .. . N, i=1,2,...n
N n-j
4 . )3 - ;
[121 byt = g @11 %ok
=3 Z
* * * * *
a PN T T A %
ﬁgyz = -20xmx) Ay = =24, (xc"xc) =0 (28) :
Mo A :g
[15] E-lm (x=x) =0, §=2,3,,..N.
* * * * *
> T, -1 ,T
(x0)2 = [A2A2] AZxc (29) ;
Al N %;';
[19] %3 :}2.2 8o 1=2,3, .. .1, %
M ~ M + M E
(18] Sp= Ind oI a7 oY 3
ms1l m=1 m=1 E
* * * * *
22

L gy 1

s - - - - o T L P S = VU Sy
- - - Tt T = o= - = e = P T R P " P T S TP ILUE T




1y e 1 g N g 3 L S

;m - "';‘o = "G, - ;o';‘-o (30) b

bl s

. [A;Azl—lAg % | _

An)"* “(n)

a R N
[20] X, = xo+ihxo+ 121-2 T X

a A N . E
P - h)n=1 ~(n) L
[21] )+ !21_2 AT

s N n—j A ‘ V ;
[22] "ij) - tzl-j g%;“ 'xé‘}), j=2,3, ...N . n

By %, = Byy(xg), (31)
N

(17] )

(33) P

(34)




o T T T T T s

[40]

[39]

[46]

(471

(48]

(60}

(xg)y = Gy + (g, BAT 6

N

x) =R+ 1%:2 W s 1701, ..
N n~j

@, § o™

%7 L G e 37001

(1) N (Mh)n'j

G = L @ &k 323 .

n=j

* * % *
6x = vbx, - C(Glgo):z

N N n
o h) (n)
Ax x Ay - E Z (1. va
i ™M pei ey ! Op

* * % *

24

(38)

(43)




Xy = Xy twlx,

[68] ;éj)-'ifi”-rajﬁ‘“, §=0,1,...N

N n-j : , ’
691 g = ) Mo, pez2forged;1 ‘ |
3 n'-p(nj)!Qu p=jforji=2,3...N -
[ ! 5, 1 o
66] Q, = q m, §j=2,3 ...N :
3 ne2 I gy ‘
[Ag] = layy1™ §
n M M g
[64)] q, = L o P ‘
in n 51-1 g-m i
* %* * * * .
E oi;, - o - qa”*lio (51) :
- N n-j _
() Z . g_j D 70,1, ... N
% * *® * *
v - ¢ [Ap(cra)1™ Ayv (52)
N n-j
= (Mh)
. [69] Q, = == Q, p=2for =0, 1
3 E_p(n—j)!n p=jforj=2,3...N
[66], [64] above
* * * *® *

25




[41]

[51)

[51a]

[PUSPURRPPEUVIN P ———

X o= m

A(j & - g

n=j

@)™ 2(n)
(n-j)! an ’

~ N
xéj)- )

n=j

(M) ~(n)
(=301 ™M

26

j=o0,1,.

j'o,lgooo

. N.

N

(54)

;
3
;
¥
=
.
;::;
B
5
3
2
=
a
)
K |

E
3
g
E
3
by
4
2
e
E
B
E
=
32
E
a3
3
=
z
3
3
=
3
B
=
z
B
]
)
E
E
Z




PPN Rl B mw*‘w{f%mM

Sy s

N
.
¥
£
5

References

1,

b,

"QD - A New Efficient Digital Filter", W. A. McCool, Internal Memorandum

No. 60, Aug. 1967, Analysis and Computation Directorate, White Sands Missile
Range, New Mexico.

"Optimizing the Dynamic Parameters of a Track-While-Scan System", Jack

- Sklansky, RCA Review, June 1957, RCA Laboratories, Princeton, N.J.

"Synthesis of an Optimal Set of Radar Track-While-Scan Smoothing Equations",
T.R. Bendict and G. W. Bordner, IRE Transactions on Automatic Control, 1962.

"Development of a Linear Recursive Filter", J. J. Lynn, Oct, 1964, In-Flight
Analysis, Mathematical Services, RCA Service Co.

27

R

" L Sl o e o Gl
e, '"Hﬁ‘hﬁ’ﬂ.‘ir"dﬁl‘ﬁ?ﬁ.Em»"”ﬁ:n”i-f’ulmimfmmfﬁtmﬂm' I a8 bt L Lol i oot SRR

5
=
k3
E
E
£
E
=
2
El
=
;:

it
ko

%

B g 3 LA S

RS R



